125
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Investigation of the AGN-201M Research Reactor’s Unique Dominance Ratio

ORCID Icon, &
Pages 1323-1332 | Received 23 Feb 2022, Accepted 03 Jun 2022, Published online: 01 Aug 2022
 

Abstract

The dominance ratio is the ratio of the first higher-order mode eigenvalue of a system to the fundamental eigenvalue, k1/k0. It can be used to determine how well coupled the neutrons in a multiplying system are, as well as the computational difficulty of the power iteration method in a Monte Carlo simulation. The purpose of this study is to investigate the University of New Mexico’s (UNM’s) AGN-201M reactor’s unusually low dominance ratio of 0.632. The AGN-201M reactor is a small, thermal spectrum reactor located at the UNM. It is moderated by polyethylene, reflected by graphite, and uses fuel comprised of uranium microspheres embedded in polyethylene plates that are separated by an aluminum baffle. The investigation included a parametric study of the reactor’s fuel geometry, fuel density, and reflector thickness to examine their impact on the reactor’s dominance ratio. In addition, neutronically similar systems were examined to identify common causes for systems with low dominance ratios. The reason for the small dominance ratio of the AGN-201M reactor when compared to large thermal reactors was determined to be because of its size and fuel plate composition. The reflector’s effect on the dominance ratio is small in comparison to the other factors but was found to have a nonzero effect. Furthermore, the AGN-201M was found to have a significantly lower dominance ratio than systems with which it shares a very high (ck > 95%) degree of neutronic similarity. However, the two most similar systems were close in size to the core of the AGN-201M reactor and were moderated with polyethylene as well.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.