179
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

An Improved Dual Asymmetric Penalized Least Squares Baseline Correction Method for High-Noise Spectral Data Analysis

ORCID Icon, , , , &
Pages 589-600 | Received 02 Jun 2022, Accepted 30 Sep 2022, Published online: 21 Nov 2022
 

Abstract

Baseline drift and noise can blur or even drown out a signal and affect analysis results, especially in multivariate analysis. To address the problem of spectrum denoising and baseline correction, this paper proposes an improved dual asymmetric penalized least squares (IDAPLS) baseline correction method. The proposed method first changes the single parameter λ used for balancing fidelity and roughness in the traditional penalty least squares (PLS) method into a new diagonal matrix Λ and uses the fast convergent inverse tangent S-type penalty function to iteratively estimate the noise level. Then, the diagonal matrix Ψ is introduced into the fidelity of the updated energy spectrum, and the element ψi is updated iteratively by using the inverse tangent S-type penalty function. Finally, the baseline of the original signal is obtained when a preset number of iterations or termination criteria are reached. Compared with other methods, IDAPLS solves the problem of underfitted curves when dealing with additive noise that the asymmetric least squares method and adaptive iterative reweighted penalized least squares method would get. The proposed method also retains the advantage of fast PLS and realizes the further approximation of the fitting baseline to the real baseline. Especially, in the case of high noise, this method reduces the error of the traditional PLS method from 30% to less than 5%, which gives a useful reference for nuclear data analysis.

Acknowledgments

The authors are grateful to the team from the Purple Mountain Observatory, Chinese Academy of Sciences, for their valuable suggestions and discussions.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Supported in part by the Fundamental Research Funds for the Central Universities (grant number JZ2019HGTB0082).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.