187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Capability Extension of the High-Resolution Thermal-Hydraulic Code ESCOT for Hexagonal Geometry Core Multiphysics Analysis

, , & ORCID Icon
Pages 1634-1655 | Received 20 Aug 2022, Accepted 22 Oct 2022, Published online: 21 Dec 2022
 

Abstract

The capability of the ESCOT pin-level nuclear reactor core thermal-hydraulic (T/H) code is extended for the multiphysics analysis of hexagonal geometry cores, and its performance is assessed by a code-to-code comparison with COBRA-TF (CTF). ESCOT is an accurate yet fast core T/H solution aimed at high-fidelity and high-resolution multiphysics core analysis in the framework of massively parallel computing platforms. The coupling of ESCOT with the nTRACER direct whole-core calculation code is enhanced for the hexagonal geometry handling needed for VVER core analysis. The lateral momentum terms, the turbulent mixing coefficient values, and the parallelization algorithms are modified to handle hexagonal geometry. The newly implemented ESCOT features are verified by comparing single-assembly and full-core steady-state standalone and coupled solutions for the VVER-1000 benchmark X-2 with CTF results.

The ESCOT and CTF results show differences within an acceptable range in both standalone and coupled calculations. The computing time superiority due to the use of the drift flux model (DFM) of ESCOT over the CTF two-fluid model is corroborated with a speedup factor of 1.5. The use of the DFM together with the axial-radial parallelization capability of ESCOT makes ESCOT an ideal alternative to replace the simplified built-in T/H solver in nTRACER as the coupled simulation results demonstrate.

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (no. 2021M2D6A1048220).

Disclosure Statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.