78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Few-View CT Image Reconstruction via Least-Squares Methods: Assessment and Optimization

ORCID Icon, , &
Pages 193-206 | Received 29 Nov 2022, Accepted 01 Apr 2023, Published online: 30 Jun 2023
 

Abstract

The use of iterative algebraic methods applied to the reconstruction of computed tomography (CT) medical images is proliferating to reconstruct high-quality CT images using far fewer views than through analytical methods. This would imply reducing the dose of X-rays applied to patients who require this medical test. Least-squares methods are a promising approach to reconstruct the images with few projections obtaining high quality. In addition, since these techniques involve a high computational load, it is necessary to develop efficient methods that make use of high-performance-computing tools to accelerate reconstructions. In this paper, three least-squares methods are analyzed—Least-Squares Model Based (LSMB), Least-Squares QR (LSQR), and Least-Squares Minimal Residual (LSMR)—to determine whether the LSMB method provides faster convergence and thus lower computational times. Moreover, a block version of both the LSQR method and the LSMR method was implemented. With them, multiple right-hand sides (multiple slices) can be solved at the same time, taking advantage of the parallelism obtained with the implementation of the methods using the Intel Math Kernel Library. The two implementations are compared in terms of convergence, time, and quality of the images obtained, reducing the number of projections and combining them with a regularization and acceleration technique. The experiments show how the implementations are scalable and obtain images of good quality from a reduced number of views, with the LSQR method being better suited for this application.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research has been supported by “Universitat Politècnica de València” and is part of the TED2021-131091B-I00 project, funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR.”

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.