174
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Interactive effects of ocean acidification and water flow on growth and recruitment of early successional coralline algal communities

, , , , &
Pages 637-647 | Received 15 May 2023, Accepted 16 Oct 2023, Published online: 07 Nov 2023
 

ABSTRACT

Coralline algae play crucial roles in near-shore ecosystems but are susceptible to ocean acidification (OA). It has been hypothesized that low water velocity, allowing localized photosynthesis-driven pH-increases in the coralline surface boundary layer, could buffer against the negative impacts of OA. To test how water motion affected the sensitivity of coralline algae to OA, coralline communities (from 2 m and 10 m depth) were grown for 220 days at two pH levels (present-day: pH 8.03, OA: pH 7.65) under differing inflow rates (400, 200 and 100 ml min–1) providing water velocities of 2.7, 5.9 and 7.8 cm s–1. Communities from both depths were grown together, photographed to assess growth, and the resulting recruitment was evaluated at the experiment’s conclusion. Low seawater pH reduced growth by c. 11% (highest flow), further decreased by >23% under the lowest flow. This reduction resulted in differential outcomes for the two depths, with skeletal net-dissolution under the combination of low flow and pH 7.65 for 10 m communities. Furthermore, there was a synergistic interaction between the effects of flow and pH, whereby the negative effect of OA strengthened under low flow, with recruitment halved at pH 7.65. This demonstrates that OA impacts can be modulated by the flow environment. Surprisingly, increased flow rates/water velocities reduced negative impacts of low pH, thus further challenging the notion that slow flow habitats offer protection from OA. The observed interactions between water flow and OA on early successional communities and their recruits may hold implications for the future of rocky reef systems dominated by these communities.

ACKNOWLEDGEMENTS

We thank Brenton A. Twist for his help with culture maintenance and Kim Currie for her continuous support and expertise in seawater carbonate chemistry. Special thanks to the management committee of the East Otago Taiāpure for facilitating the field component of this research.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

Supplementary Information

Supplemental data for this article can be accessed online at https://doi.org/10.1080/00318884.2023.2272776

Additional information

Funding

This work was funded by the Coastal Acidification, Rate, Impacts and Management (CARIM) research program (M.L), funded by the New Zealand Ministry of Business, Innovation and Employment, the CARIM Postgraduate Scholarship (to A.K.) and the Ministry for Primary Industries (MPI) New Zealand under the Biodiversity Research Programme (ZBD2014-07; W.A.N.). C.E.C. was supported by a Rutherford Discovery Fellowship from The Royal Society of New Zealand Te Apārangi (VUW-1701).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 283.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.