282
Views
80
CrossRef citations to date
0
Altmetric
Original Articles

A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine

, , &
Pages 704-714 | Received 16 Jan 2013, Accepted 03 Mar 2013, Published online: 22 Apr 2013
 

Abstract

The direct electrochemistry of epinephrine (EP) on a modified carbon paste electrode (CPE) was described. The electrode was modified with Zinc oxide (ZnO) nanoparticles and 1,3-dipropylimidazolium bromide as a binder. The oxidation peak potential of EP at the surface of the ionic liquid ZnO nanoparticle CPE (IL/ZnO/NP/CPE) appeared at 350 mV, which was about 80 mV lower than the oxidation peak potential at the surface of the traditional carbon CPE under a similar condition. On other hand, the oxidation peak current was increased for about three times at the surface of IL/ZnO/NP/CPE compared to CPE. The linear response range and detection limit were found to be 0.09–800 μmol L−1 and 0.06 μmol L−1, respectively. Other physiological species did not interfere in the determination of EP at the surface of the proposed sensor in the optimum condition. The proposed sensor was successfully applied for the determination of EP in real samples.

Acknowledgement

The authors wish to thank the Science and Research branch, Islamic Azad University, Mazandaran, and Graduate University of Advanced Technology, Kerman, Iran for their support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,616.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.