165
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Study on the microstructure and liquid–solid correlation of Al–Mg alloys

, , &
Pages 507-514 | Received 02 Sep 2015, Accepted 17 Oct 2015, Published online: 08 Dec 2015
 

ABSTRACT

Based on the available structural models and theories of electrical resistivity (ER) of liquid alloys, the structure and the liquid–solid correlation of Al (100-x) Mgx (x = 0, 10, 20, 30, 40, 50) alloys have been qualitatively studied by measuring the ER during the heating/cooling process using the direct-current (DC) four-probe method, as well as by characterizing the solidification morphology and testing the hardness. The result shows that the ER of Al–Mg alloys increases with the increasing temperature and the Mg content; thermal state and history have an effect on the solidification structure and properties: the ER of Al–Mg alloys exhibits a lag phenomenon of structure change during the heating/cooling process. A higher heating/cooling rate contributes to the more obvious relaxation effect of ER and the more uniform structure. Furthermore, higher pouring temperature (PT) leads the melts and solidification structure to be more homogeneous, which increases the hardness.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to acknowledge the Natural Science Foundation of China [51271087], [51471076] with this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,616.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.