98
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Theoretical Approaches to Thermal Conductivity in Liquids

&
Pages 65-83 | Received 04 Jun 1996, Published online: 24 Sep 2006
 

Abstract

We first review analytical and computer modelling approaches to heat conduction in insulating liquids. Thermal conductivity Δ can be calculated by approximate analytic theory, and also by molecular simulation which solves the many-body problem for molecules interacting through specific interactions. Equilibrium and non-equilibrium molecular dynamics, NEMD, techniques are now available that enable Δ to be computed for single-component monatomic and molecular liquids, as well as their mixtures. For mixtures, Δ can be determined from the distinct Onsager coefficients, individually computed using equilibrium molecular dynamics. Electronic contributions to the thermal conductivity of liquid metals are then considered, by invoking the Wiedemann-Franz Law relating thermal and electrical transport.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.