421
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Performance comparison of commercial kits for isolating and detecting circulating tumor DNA

, , , , , , , & show all
Pages 276-281 | Received 05 May 2020, Accepted 15 Aug 2020, Published online: 17 May 2021
 

Abstract

Circulating tumor DNA (ctDNA), a fraction of cell-free DNA (cfDNA) in the circulatory system, is released from tumor cells and thus carries tumor-specific genetic signatures. Using blood-derived ctDNA to detect somatic mutations has shown great value in guiding cancer targeted therapy. Isolation and detection efficiencies are the key factors affecting the performance of ctDNA detection. To optimize and standardize our clinical practice, in this study, we analyzed the isolation efficiency of four commercial cfDNA purification kits: QIAamp circulating nucleic acid kit, AmoyDx® Circulating DNA kits, Microdiag® circulating DNA isolation kit, and MagMAX cell-free DNA isolation kit; and the detection efficiency of two mainstream domestic EGFR gene mutation detection kits: MicroDiag EGFR gene mutation detection kit and Fluorometric real-time PCR Detection Kit for the analysis of EGFR gene mutations. Reference materials and plasma samples collected from lung cancer patients and healthy volunteers were used for the analysis. Our results showed that QIAamp circulating nucleic acid kit and Microdiag® circulating DNA kit had the highest recovery rate (up to 21.25 ng/mL) for short DNA fragments of about 173 bp which is the peak length of ctDNA. For ctDNA detection, the MicroDiag® EGFR gene mutation detection kit showed the highest detection rate and sensitivity for detecting EGFR mutations at a mutant frequency of 0.5%. This work provides a reliable choice of commercial kits for the clinical application of ctDNA.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This study was supported by the Project of Shanghai Chest Hospital [YJXT20190201] and by the Innovation Group Project of Shanghai Municipal Health Commission [2019CXJQ03].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 200.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.