112
Views
29
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway

, MD PhD, &
Pages 1279-1289 | Received 14 Nov 2005, Published online: 08 Jul 2009
 

Abstract

Objective. Serotonin (5-HT) is present in much larger amounts in the gut than in the central nervous system and is predominantly synthesized and stored in mucosal enterochromaffin cells. Bicarbonate secretion by the duodenal mucosa is the major mechanism in maintaining mucosal integrity, neutralizing invading protons within the surface mucus gel. In this study the role of local 5-HT in the control of the protective secretion was investigated. Material and methods. A segment of proximal duodenum was perfused in situ in anaesthetized rats and the alkaline secretion was continuously recorded by pH-stat. Intracellular calcium signalling was measured in clusters of human and rat duodenal enterocytes devoid of neural tissue. After loading with the fluorescent probe, fura-2, the clusters were attached to the bottom of a temperature-controlled perfusion chamber. Results. Close intra-arterial infusion to the duodenal segment of 5-HT (20–200 nmol kg−1 h−1) dose-dependently increased duodenal mucosal HCO3 secretion. A higher dose (2000 nmol kg−1 h−1) did not further increase secretion. Responses were inhibited by the ganglionic blocker and nicotinic receptor antagonist hexamethonium, and were abolished by the 5-HT4 receptor antagonist SB 204070. The 5-HT3 antagonist tropisetron, in contrast, caused only slight inhibition. Viable human and rat duodenal enterocytes responded to 5-HT (100–500 nM) with an increase in intracellular calcium concentration. Pretreatment with SB 204070 or removal of external calcium abolished the response. Conclusions. Stimulation of the duodenal protective secretion by 5-HT thus involves receptors of the 5-HT4 subtype as well as nicotinic transmission, the myenteric plexus being a likely location. In addition, serotonin acts on enterocyte membrane receptors, inducing intracellular calcium signalling.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 336.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.