337
Views
26
CrossRef citations to date
0
Altmetric
Review

Current research on circular RNAs associated with colorectal cancer

&
Pages 1203-1210 | Received 05 Jun 2017, Accepted 02 Aug 2017, Published online: 16 Aug 2017
 

Abstract

Representing a novel type of endogenous noncoding RNAs, circular RNAs (circRNAs) have recently gained much attention for their involvement in multiple biological processes. CircRNAs are ubiquitously expressed in eukaryotic cells and modulate gene expression by acting as sponges of microRNAs (miRNAs) or other proteins, such as RNA-binding proteins (RBPs). Due to their unique structure, circRNAs are more stable than linear RNAs. Expression profiles of circRNAs are associated with clinicopathological characteristics of colorectal cancer patients, such as differentiation, TNM classification and distant metastasis. Furthermore, circRNAs play crucial roles in multiple processes associated with malignant phenotypes, including cell proliferation/cycle, apoptosis and invasion. Improvements in RNA-sequencing methods have helped researchers to elucidate molecular interactions between circRNAs and colorectal cancer. This review provides a comprehensive overview of the features and functions of circRNAs, as well as insights into their roles in the onset and development of colorectal cancer. Combined with the reported results, the identification of circRNAs associated with colorectal cancer will certainly contribute to early detection and help to design treatment strategies for colorectal cancer. Screening for circRNAs may provide an accessible, noninvasive yet highly sensitive diagnosis for colorectal cancer. Furthermore, a better understanding of the roles of circRNAs may also provide a novel predictive feature in colorectal cancer therapy and prognosis.

Disclosure statement

The authors have no conflicting interests (including, but not limited to, commercial, personal, political, intellectual or religious interests) to declare.

Additional information

Funding

The consulting fee for the review was provided by the National Natural Science Foundation of China (91129716, to Xiaodong He).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 336.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.