181
Views
2
CrossRef citations to date
0
Altmetric
Short communication

Characterizing nicotianamine aminotransferase: Improving its assay system and details of the regulation of its activity by Fe nutrition status

, , , &
Pages 717-721 | Received 21 Jul 1998, Accepted 01 Sep 1998, Published online: 04 Jan 2012
 

Abstract

Under iron deficient conditions, graminaceous plants secrete mugineic acid family phytosiderophores (MAs) from their roots to dissolve sparingly soluble iron compounds in the rhizosphere, and take up iron in the form of an Fe3+-MAs complex (Takagi 1976). A good correlation has been reported between the tolerance of Fe-deficiency and the amount of secreted MAs (Takagi 1993). Therefore, by using the genes involved in MAs biosynthesis, molecular breeding might produce transgenic plants tolerant to Fe-deficiency with a high level of MAs secretion. The biosynthetic pathway of MAs from L-methionine has been clarified (Fig. 1) and the enzymes participating in this process are now being investigated to isolate the genes responsible. Nicotianamine aminotransferase (NAAT) catalyzes the amino group transfer between nicotianamine (NA) and 2-oxoglutaric acid (Fig. 1). In order to purify NAAT, enzyme assay methods for NAAT have been developed and modified (Shojima et al. 1990; Ohata et al. 1993; Kanazawa et al. 1994). Some characteristics of NAAT have been reported using these enzyme assay methods (Kanazawa et al. 1994, 1995). Here, we further investigate some characteristics of this enzyme to improve the enzyme assay method, namely 1) the effect of K+ and Mg2+ on NAAT activity in vitro, and 2) the direct influence of MAs, Fe3+, and Fe2+ on NAAT activity. In addition, based on these results, the induction of enzyme activity by Fe-deficiency and suppression of the activity by Fe-resupply was investigated, by applying the new enzyme assay method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.