Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 55, 2022 - Issue 4
250
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network

, , , &
Pages 229-239 | Received 10 Oct 2021, Accepted 03 Mar 2022, Published online: 16 May 2022
 

Abstract

The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky–Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation (Project No. 61962048); Key technology projects in Inner Mongolia (Project No. 2020GG0169); and Inner Mongolia Education Department Project (Project No. NJZY21491).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 745.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.