Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 56, 2023 - Issue 3
131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Binding characteristics of Bruton’s tyrosine kinase inhibitor ibrutinib with bovine serum albumin: multi-spectroscopic combined with molecular simulation

, , , & ORCID Icon
Pages 166-182 | Received 10 Aug 2022, Accepted 14 Feb 2023, Published online: 07 Mar 2023
 

Abstract

Ibrutinib, as an oral Bruton’s tyrosine kinase inhibitor, has highly potent, covalent irreversible, and other characteristics. In this work, the binding characteristics of ibrutinib with bovine serum albumin were investigated using multi-spectroscopic techniques and molecular simulations. The findings demonstrated that ibrutinib could quench the endogenous fluorescence of bovine serum albumin by static quenching mode, meanwhile bovine serum albumin could also quench the fluorescence of ibrutinib. In the binding process of ibrutinib with bovine serum albumin, ibrutinib caused a bathochromic shift in the absorption band of bovine serum albumin, further indicating that ibrutinib and bovine serum albumin formed a ground state ibrutinib and bovine serum albumin complex. It is confirmed that ibrutinib has a strong affinity to bovine serum albumin due to the binding constant of more 104 M−1. Experimental findings showed that ibrutinib resulted in the decrease in the hydrophobicity or the enhancement in the polarity of the surroundings around Tyr and Trp residues of bovine serum albumin and diminishing in α-helix and β-sheet content of bovine serum albumin. The findings from site-competition experiments confirmed that the binding site of ibrutinib onto bovine serum albumin was the same as that of ibuprofen, that is, ibrutinib bound to the site II' site of bovine serum albumin, which was verified by molecular docking. The findings from thermodynamic analysis revealed that ibrutinib spontaneously bound onto bovine serum albumin through an enthalpy-driven and the driving forces included hydrogen bonding and van der Waals forces being the dominating forces. The findings from molecular dynamics simulation confirmed that some residues such as ARG-208, ALA-209, ALA-212, LEU-326, and LYS-350 made major contributions in ibrutinib and bovine serum albumin complexation.

Additional information

Funding

The authors received the funding from Natural Science Foundation of Zhejiang province (LY19B020009) and the chemical company (KYY-HX-20210293; YX-[2016]030@; YX-KF-[2005]018).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 745.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.