Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 39, 2009 - Issue 6
2,444
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Efficient One-Pot Synthesis of 4-Aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one and 4-Aryl-3-cyano-1,2,5,6-tetrahydrobenzo[h]quinolin-2-one Derivatives Under Solvent-Free Conditions

, , , &
Pages 1027-1034 | Received 07 May 2008, Published online: 25 Feb 2009

Abstract

4-Aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one and 4-aryl-3-cyano-1,2,5,6-tetrahydrobenzo[h]quinolin-2-one have been prepared from indan-1-one or 3,4-dihydronaphthalen-1(2H)-one, aromatic aldehydes, 2-cyanoacetamide, in the presence of sodium hydroxide under solvent-free conditions. The rapid and facile method produced products in high yields.

There has been a gradual change from classical reaction conditions to more environmentally friendly routes.[ Citation 1 ] This growth of green chemistry holds significant potential for reduction of the by-products, waste production and lowering of energy costs. As one of efficient synthetic methods of green chemistry, solvent-free synthesis is now used in a lot of chemical transformations for the synthesis of various compounds.[ Citation 2 ]The most evident improvements are reduced reaction times and cleaner reactions because of fewer side products.

By virtue of the convergence of productivity, facile execution, and generally high yield of products, one-pot multicomponent reactions (MCRs) have attracted considerable attention from the point of view of ideal synthesis.[ Citation 3 ] However, if the one-pot MCRs could be carried out under solvent-free conditions, it would be the most efficient synthetic methods of organic synthesis. As part of our continued interest[ Citation 4 ] in the development of facile methods for the synthesis of organic compounds, herein we report a very simple and highly efficient method for the synthesis of 4-aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one and 4-aryl-3-cyano-1,2,5,6-tetrahydro-benzo[h]quinolin-2-one derivatives via a three-component cyclocondensation reaction under solvent-free conditions.

Substituted 3-cyano-2-pyridones derivatives are important intermediates in the pharmaceutical, dye, and photo industries. Synthesis of these compounds have been widely studied using conventional heating in the presence of various catalysts and usually in polar solvents.[ Citation5-7 ] However, in reported literature, the organic solvent was necessary. In our recent research, we found these compounds also could be synthesized under solvent-free conditions. In the typical experimental procedure, indan-1-one, aromatic aldehydes, and 2-cyanoacetamide were mixed thoroughly with 0.2 g sodium hydroxide. The reaction mixture was heated at 70 °C for about 10–15 min and the 4-aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one was afforded in excellent yields. To expand this reaction, 3,4-dihydronaphthalen-1(2H)-one was chosen to react with aromatic aldehydes and 2-cyanoacetamide under similar conditions. The reactions also could be carried out smoothly, and 4-aryl-3-cyano-1,2,5,6-tetrahydrobenzo[h ]quinolin-2-one could be obtained with high yields (Scheme ).

Scheme 1 The reaction of indan-1-one or 3,4-dihydronaphthalen-1(2H)-one, aromatic aldehydes, and 2-cyano-acetamide.

Scheme 1 The reaction of indan-1-one or 3,4-dihydronaphthalen-1(2H)-one, aromatic aldehydes, and 2-cyano-acetamide.

All structures of the compounds were confirmed from IR, 1H NMR, and elemental analyses. The x-ray diffraction analysis of crystal 4 h [ 8 ]further confirmed the structures (Fig. 1). Our observations are recorded in Table .

Figure 1 Structure of compound 4h.

Figure 1 Structure of compound 4h.

Table 1. The reaction results for compounds

In conclusion, we have demonstrated a novel, one-pot, three-component reaction under solvent-free conditions that offers a facile and efficient route for the synthesis of 4-aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one and 4-aryl-3-cyano-1,2,5,6-tetrahydro-benzo[h]quinolin-2-one derivatives. This method has some advantages, such as shorter reaction times, milder conditions, simplicity of the reaction, and good product yields.

EXPERIMENTAL

Melting points were uncorrected. IR spectra were recorded on a Tensor 27 spectrometer in KBr. 1H NMR spectra were obtained in DMSO-d 6 solution with Me4Si as internal standard using a Bruker-400 spectrometer. Elemental analyses were carried out using Perkin-Elmer 240 II analyzer. X-ray diffraction was measured on a Siemens P4 diffractometer.

General Procedure for the Syntheses of 4-Aryl-3-cyano-2,5-dihydro-1H-indeno[1,2-b]pyridin-2-one and 4-Aryl-3-cyano-1,2,5,6-tetrahydro-benzo[h]quinolin-2-one

The general procedure is represented as follows: indan-1-one (or 3,4-dihydronaphthalen-1(2H)-one) 1 (2 mmol), aromatic aldehyde 2 (2 mmol), 2-cyanoacetamide 3 (2 mmol), and NaOH (5 mmol) were added to a flask at 70 °C. The reaction could be completed within 10–15 min, and the reaction mixture was poured into water. The product was filtered, dried, and recrystallized from 25–30 mL 95% ethanol.

Data

Compound 4a

Mp > 300 °C; IR (KBr) v: 3241 (NH), 2222 (CN), 1636 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.66 (2H, s, CH2), 7.50–7.53 (2H, m, ArH), 7.63 (3H, t, J = 7.8, 8.4 Hz, ArH), 7.70 (2H, d, J = 7.8 Hz, ArH), 8.17 (1H, d, J = 2.0 Hz, ArH), 13.65 (1H, s, NH). Anal. calcd. for C19H11BrN2O: C, 62.83; H, 3.05; N, 7.71. Found: C, 62.62; H, 3.10; N, 7.87.

Compound 4b

Mp > 300 °C; IR (KBr) v: 3287 (NH), 2221 (CN), 1636 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.67 (2H, s, CH2), 7.50 (2H, t, J = 3.6, 3.6 Hz, ArH), 7.63 (1H, d, J = 6.0 Hz, ArH), 7.67 (4H, t, J = 8.4, 8.4 Hz, ArH), 7.17 (1H, d, J = 6.0 Hz, ArH), 13.64 (1H, s, NH). Anal. calcd. for C19H11FN2O: C, 75.49; H, 3.67; N, 9.27. Found: C, 75.60; H, 3.57; N, 9.34.

Compound 4c

Mp > 300 °C; IR (KBr) v: 3337 (NH), 2222 (CN), 1698 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.50 (2H, dd, J = 22.4 Hz, J = 22.4 Hz, CH2), 7.54 (2H, t, J = 3.6. 3.6 Hz, ArH), 7.58 (2H, br, ArH), 7.62 (2H, t, J = 4.0, 4.0 Hz, ArH), 7.72 (1H, d, J = 7.2 Hz, ArH), 8.20 (1H, d, J = 4.0 Hz, ArH), 13.68 (1H, s, NH). Anal. calcd. for C19H11ClN2O: C, 71.59; H, 3.48; N, 8.79. Found: C, 71.39; H, 3.56; N, 8.84.

Compound 4d

Mp > 300 °C; IR (KBr) v: 3296 (NH), 2219 (CN), 1637 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.68 (2H, s, CH2), 7.53 (2H, t, J = 5.6. 5.6 Hz, ArH), 7.64 (1H, d, J = 5.6 Hz, ArH), 7.70 (4H, dd, J = 8.4 Hz, J = 8.4 Hz, ArH), 8.19 (1H, d, J = 5.6 Hz, ArH), 13.68 (1H, s, NH). Anal. calcd. for C19H11ClN2O: C, 71.59; H, 3.48; N, 8.79. Found: C, 71.36; H, 3.58; N, 8.86.

Compound 4e

Mp > 300 °C; IR (KBr) v: 3291 (NH), 2223 (CN), 1635 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 4.13 (2H, s, CH2), 7.50–7.54 (1H, m, ArH), 7.52 (2H, t, J = 6.4, 6.4 Hz, ArH), 7.84 (2H, t, J = 6.4, 6.4 Hz, ArH), 7.89 (1H, d, J = 6.8 Hz, ArH), 8.00 (1H, s, ArH), 13.85 (1H, s, NH). Anal. calcd. for C19H10Cl2N2O: C, 64.61; H, 2.85; N, 7.93. Found: C, 64.91; H, 2.75; N, 7.83.

Compound 4f

Mp > 300 °C; IR (KBr) v: 3339 (NH), 2219 (CN), 1658 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.71 (2H, s, CH2), 7.54 (2H, t, J = 6.0 Hz, J = 7.2 Hz, ArH), 7.66 (1H, d, J = 7.2 Hz, ArH), 7.69 (1H, d, J = 8.4 Hz, ArH), 7.89 (1H, d J = 8.0 Hz, ArH), 8.04 (1H, d, J = 7.6 Hz, ArH), 8.19–8.21 (1H, br, ArH), 13.76 (1H, s, NH). Anal. calcd. for C19H10Cl2N2O: C, 64.61; H, 2.85; N, 7.93. Found: C, 64.47; H, 2.91; N, 7.86.

Compound 4g

Mp > 300 °C; IR (KBr) v: 3292 (NH), 2219 (CN), 1637 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 3.72 (2H, s, CH2), 3.87 (3H, s, OCH3), 7.14 (2H, t, J = 8.8, 8.8 Hz, ArH), 7.52 (2H, t, J = 3.6, 3.6 Hz, ArH), 7.66 (1H, m, ArH), 7.89 (2H, d, J = 8.8 Hz, ArH), 8.17 (1H, br, ArH), 13.59 (1H, s, NH). Anal. calcd. for C20H14N2O2: C, 76.42; H, 4.49; N, 8.91. Found: C, 76.62; H, 4.41; N, 8.80.

Compound 4h

Mp > 300 °C; IR (KBr) v: 3131 (NH), 2220 (CN), 1634 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.33 (2H, br, CH2), 2.74 (2H, t, J = 7.2, 7.2 Hz, CH2), 7.35 (1H, d, J = 6.4 Hz, ArH), 7.39–7.46 (4H, m, ArH), 7.52 (2H, dd, J = 5.2 Hz, J = 5.6 Hz, ArH), 8.07 (1H, br, ArH), 12.77 (1H, s; NH). Anal. calcd. for C20H13FN2O: C, 75.94; H, 4.14; N, 6.01. Found: C, 75.63; H, 4.07; N, 6.12.

Compound 4i

Mp > 300 °C; IR (KBr) v: 3124 (NH), 2221 (CN), 1638 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.36 (2H, t, J = 6.0, 6.0 Hz, CH2), 2.76 (2H, t, J = 6.8, 6.8 Hz, CH2), 7.35 (1H, d, J = 6.8 Hz, ArH), 7.43 (4H, dd, J = 8.4 Hz, J = 8.4 Hz, ArH), 7.78 (2H, d, J = 8.8 Hz, ArH), 8.07 (1H, d, J = 7.6 Hz, ArH), 12.62 (1H, s, NH). Anal. calcd. for C20H13BrN2O: C, 63.68; H, 3.47; N, 7.43. Found: C, 63.40; H, 3.51; N, 7.54.

Compound 4j

Mp > 300 °C; IR (KBr) v: 3132 (NH), 2221 (CN), 1638 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.37 (2H, br, CH2), 2.76 (2H, t, J = 6.8, 6.8 Hz, CH2), 7.35 (1H, d, J = 7.2 Hz, ArH), 7.44 (4H, dd, J = 8.0 Hz, J = 8.0 Hz, ArH), 7.78 (2H, d, J = 8.4 Hz, ArH), 8.07 (1H, d, J = 7.6 Hz, ArH), 12.66 (1H, s, NH). Anal. calcd. for C20H13ClN2O: C, 72.18; H, 3.94; N, 8.42. Found: C, 72.40; H, 3.92; N, 8.52.

Compound 4k

Mp > 300 °C; IR (KBr) v: 3130 (NH), 2223 (CN), 1637 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.37 (2H, br, CH2), 2.76 (2H, t, J = 6.8, 6.8 Hz, CH2), 7.35 (1H, d, J = 7.2 Hz, ArH), 7.43 (2H, dd, J = 7.2 Hz, J = 7.2 Hz, ArH), 7.49 (2H, d, J = 8.0 Hz, ArH), 7.64 (2H, d, J = 8.4 Hz, ArH), 8.07 (1H, d, J = 7.6 Hz, ArH), 12.62 (1H, s, NH). Anal. calcd. for C20H13ClN2O: C, 72.18; H, 3.94; N, 8.42. Found: C, 72.40; H, 3.85; N, 8.55.

Compound 4l

Mp 287–289 °C; IR (KBr) v: 3123 (NH), 2218 (CN), 1635 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.28 (1H, t, J = 7.2, 6.8 Hz, CH2), 2.38 (1H, t, J = 6.8, 7.2 Hz, CH2), 2.75 (2H, t, J = 6.8 Hz, J = 8.0 Hz, CH2), 7.23–7.30 (1H, m, ArH), 7.35–7.48 (3H, m, ArH), 7.69–7.85 (2H, m, ArH), 8.03–8.09 (1H, m, ArH), 12.54 (1H, s, NH). Anal. calcd. for C20H12Cl2N2O: C, 65.41; H, 3.29; N, 7.63. Found: C, 65.66; H, 3.22; N, 7.51.

Compound 4m

Mp > 300 °C; IR (KBr) v: 3128 (NH), 2221 (CN), 1634 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.37 (2H, br, CH2), 2.40 (3H, s, CH3), 2.76 (2H, t, J = 7.2, 7.2 Hz, CH2), 7.31 (2H, d, J = 8.4 Hz, ArH), 7.36 (3H, d, J = 8.4 Hz, ArH), 7.43 (2H, t, J = 6.4 Hz, J = 7.2 Hz, ArH), 8.07 (1H, d, J = 8.4 Hz, ArH), 12.65 (1H, s, NH). Anal. calcd. for C21H16N2O: C, 80.75; H, 5.16; N, 8.97. Found: C, 80.36; H, 5.21; N, 8.87.

Compound 4n

Mp > 300 °C; IR (KBr) v: 3120 (NH), 2219 (CN), 1636 (CO) cm−1; 1H NMR (400 MHz, DMSO-d 6) (δ, ppm): 2.41 (2H, t, J = 6.0, 7.2 Hz, CH2), 2.75 (2H, t, J = 6.0, 7.2 Hz, CH2), 3.84 (3H, s, CH3O), 7.11 (2H, d, J = 8.8 Hz, ArH), 7.34 (1H, d, J = 6.8 Hz, ArH), 7.38 (3H, d, J = 8.8 Hz, ArH), 7.43 (1H, t, J = 7.2, 7.2 Hz, ArH), 8.06 (1H, d, J = 7.2 Hz, ArH), 12.58 (1H, s, NH). Anal. calcd. for C21H16N2O2: C, 76.81; H, 4.91; N, 8.53. Found: C, 76.55; H, 4.86; N, 8.62.

ACKNOWLEDGMENTS

We thank the Natural Science Foundation of Jiangsu Education Department (No. 08KJB150017), the National Natural Science Foundation of China (No. 20772103), and the PeiYu Foundation (No. 07PYL06) of Xuzhou Normal University for financial support.

REFERENCES

  • (a) Varma , R. S. Clay and clay-supported reagents in organic synthesis . Tetrahedron 2002 , 58 , 1235 – 1255 ; (b) Tanaka, K. Solvent-Free Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2003 .
  • Tanaka , K. ; Toda , F. Solvent-free organic synthesis. Chem. Rev. 2000, 100, 1025–1074.
  • (a) Weber , L. ; Illegen , K. ; Almstetter , M. Discovery of new multi component reactions with combinatorial methods . Synlett 1999 , 366 – 374 ; (b) Armstrong , R. W. ; Combs , A. P. ; Tempest , P. A. ; Brown , S. D. ; Keating , T. A. Multiple-component condensation strategies for combinatorial library synthesis . Acc. Chem. Rev. 1996 , 29 , 123 – 131 .
  • (a) Rong , L. C. ; Li , X. Y. ; Wang , H. Y. ; Shi , D. Q. ; Tu , S. J. An efficient and facile synthesis of 2-amino-4,6-diarylbenzene-1,3-dicarbonitrile and 1,2-dihydro-2-oxo-4,6-diarylpyridine-3-carbonitrile under solvent-free conditions . Chem. Lett. 2006 , 35 , 1314 – 1315 ; (b) Rong , L. C. ; Wang , H. Y. ; Shi , J. W. ; Yang , F. ; Yao , H. ; Tu , S. J. ; Shi , D. Q. An efficient and facile procedure for the synthesis of 4,6-Diaryl-2(1H)-pyridones under solvent-free conditions . J. Heterocycl. Chem. 2007 , 44 ( 10 ), 1505 – 1508 ; (c) Rong , L. C. ; Han , H. X. ; Yang , F. ; Yao , H. ; Jiang , H. ; Tu , S. J. An efficient one-pot synthesis of 2-amino-4,6-diarylbenzene-1,3-dicarbonitrile under solvent-free conditions . Synth. Commun. 2007 , 37 ( 21 ), 3767 – 3772 .
  • Siedel , M. C. ; Viste , K. L. ; Yih , R. Y. Plant growth inhibition with N-aryl-pyrid-2-ones. U. S. Patent 3,761,240, September 25 , 1973 .
  • Misic-Vukovic , M. ; Mijin , D. ; Radojkovic-Velickovic , M. ; Valentic , N. ; Krstic , V. Condensation of 1,3-diketones with cyanoacetamide: 4,6-Disubstituted-3-cyano-2-pyridones . J. Serb. Chem. Soc. 1998 , 63 ( 8 ), 585 – 599 .
  • Paulvannan , K. ; Chen , T. Solid-phase synthesis of 1,2,3,4-tetrahydro-2-pyridones via aza-annulation of enamines . J. Org. Chem. 2000 , 65 , 6160 – 6166 ; (b) Dave , C. G. ; Shah , D. A. ; Agrawal , Y. K. A simple and convenient synthesis of 4,6-disubstituted 3-cyanopyridin-2(1H)-ones under solvent-free microwave conditions . Ind. J. Chem. 2004 , 43B ( 4 ), 885 – 887 ; (c) Alberola , A. ; Calvo , L. A. ; Ortega , A. G. ; Ruiz , M. C. S. ; Yustos , P. Regioselective synthesis of 2(1H)-pyridinones from â-aminoenones and malononitrile: Reaction mechanism . J. Org. Chem. 1999 , 64 , 9493 – 9498 .
  • X-ray crystallography for 4h: empirical formula C20H13FN2O, Fw = 316.32, T = 298(2) K, triclinic, space group p–1, a = 8.116 (10) Å, b = 9.278 (12) Å, c = 11.263 (14) Å, α = 98.674 (19)°, β = 105.095 (17)°, γ = 104.846 (18)°, V = 769.7 (16) Å3, Z = 2, Dcalcd. = 1.365 Mg/m3, λ (MoK) = 0.71073 Å, µ = 0.094 mm−1, F(000) = 328. 2.34° < θ < 25.001°, R = 0.0482, wR = 0.1149, s = 0.997, largest diff. peak and hole: 0.149 and −0.168 e Å−3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.