982
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Geodesic Gaussian Processes for the Parametric Reconstruction of a Free-Form Surface

, &
Pages 87-99 | Received 01 Aug 2012, Published online: 04 Mar 2015
 

Abstract

Reconstructing a free-form surface from 3-dimensional (3D) noisy measurements is a central problem in inspection, statistical quality control, and reverse engineering. We present a new method for the statistical reconstruction of a free-form surface patch based on 3D point cloud data. The surface is represented parametrically, with each of the three Cartesian coordinates (x, y, z) a function of surface coordinates (u, v), a model form compatible with computer-aided-design (CAD) models. This model form also avoids having to choose one Euclidean coordinate (say, z) as a “response” function of the other two coordinate “locations” (say, x and y), as commonly used in previous Euclidean kriging models of manufacturing data. The (u, v) surface coordinates are computed using parameterization algorithms from the manifold learning and computer graphics literature. These are then used as locations in a spatial Gaussian process model that considers correlations between two points on the surface a function of their geodesic distance on the surface, rather than a function of their Euclidean distances over the xy plane. We show how the proposed geodesic Gaussian process (GGP) approach better reconstructs the true surface, filtering the measurement noise, than when using a standard Euclidean kriging model of the “heights”, that is, z(x, y). The methodology is applied to simulated surface data and to a real dataset obtained with a noncontact laser scanner. Supplementary materials are available online.

Acknowledgments

The authors thank two anonymous referees, an Associate Editor and the Editor for their comments and suggestions which have resulted in an improved presentation. This research was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 285075-MuProD.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.