507
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Constructing General Orthogonal Fractional Factorial Split-Plot Designs

, &
Pages 488-502 | Received 01 Oct 2012, Published online: 18 Nov 2015
 

Abstract

While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular fractional factorial split-plot designs was either based only on Plackett–Burman designs, or on small nonregular designs with limited numbers of factors. In this article, we present a novel approach to designing general orthogonal fractional factorial split-plot designs. One key feature of our approach is that it can be used to construct two-level designs as well as designs involving one or more factors with more than two levels. Moreover, the approach can be used to create two-level designs that match or outperform alternative designs in the literature, and to create two-level designs that cannot be constructed using existing methodology. Our new approach involves the use of integer linear programming and mixed integer linear programming, and, for large design problems, it combines integer linear programming with variable neighborhood search. We demonstrate the usefulness of our approach by constructing two-level split-plot designs of 16–96 runs, an 81-run three-level split-plot design, and a 48-run mixed-level split-plot design. Supplementary materials for this article are available online.

ACKNOWLEDGMENTS

The research of the first and third author was supported by the Flemish Fund for Scientific Research FWO. The authors are grateful to Nha Vo-Thanh for the MATLAB codes he developed and for his help when preparing a revised version of this article, and to Pablo Andres Maya Duque for his help with CPLEX. The authors are also grateful to two referees, an associate editor, and the previous editor for their constructive suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.