586
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Monotonic Quantile Regression With Bernstein Polynomials for Stochastic Simulation

Pages 180-190 | Received 01 Aug 2014, Published online: 18 Apr 2016
 

Abstract

Quantile regression is an important tool to determine the quality level of service, product, and operation systems via stochastic simulation. It is frequently known that the quantiles of the output distribution are monotonic functions of certain inputs to the simulation model. Because there is typically high variability in estimation of tail quantiles, it can be valuable to incorporate this information in quantile modeling. However, the existing literature on monotone quantile regression with multiple inputs is sparse. In this article, we propose a class of monotonic regression models, which consists of functional analysis of variance (FANOVA) decomposition components modeled with Bernstein polynomial bases for estimating quantiles as a function of multiple inputs. The polynomial degrees of the bases for the model and the FANOVA components included in the model are selected by a greedy algorithm. Real examples demonstrate the advantages of incorporating the monotonicity assumption in quantile regression and the good performance of the proposed methodology for estimating quantiles. Supplementary materials for this article are available online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.