167
Views
5
CrossRef citations to date
0
Altmetric
Papers

Effect of additives on mesophilic α-amylase and its application in the desizing of cotton fabrics

, , &
Pages 1322-1327 | Received 16 Jul 2013, Accepted 13 Nov 2014, Published online: 08 Jan 2015
 

Abstract

An investigation was carried out on thermal stability of α-amylase. The influence of various additives (calcium acetate, sodium lactate, L-histidine, and water-soluble chitosan) on the stability of α-amylase was studied. Results showed the inactivation behavior of α-amylase with or without additives all followed the first-order kinetics. All additives (Ca2+, sodium lactate, L-histidine, and water-soluble chitosan) displayed good stabilizing effect on α-amylase lower than 80 °C, and only water-soluble chitosan had an efficient stabilizing effect on α-amylase when the treatment temperature exceeds 80 °C. All additives improved the catalytic activity of α-amylase at 70–90 °C, and the appearance of water-soluble chitosan increased the catalytic activity of α-amylase at 90 °C sharply. A desizing ratio of 68.42% was obtained by treating the cotton fabrics in the buffer solution at 100 °C without α-amylase. To obtain a desizing ratio exceed 95% when fabrics were treated at 100 °C for 10 min, the addition of water-soluble chitosan saves 2/3 α-amylase dosage. Moreover, water-soluble chitosan showed a further improvement in desizing effect than the additive of calcium acetate.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.