287
Views
12
CrossRef citations to date
0
Altmetric
Papers

The effect of oxidation–reduction potential on the degumming of ramie fibers with hydrogen peroxide

&
Pages 1251-1261 | Received 05 Apr 2014, Accepted 05 Nov 2014, Published online: 03 Dec 2014
 

Abstract

Oxidation–reduction potential (ORP) was applied to monitor and control the oxidation reaction of peroxide hydrogen in the degumming process of ramie fibers. The effects of original pH, hydrogen peroxide dosage, oxidation temperature, and reaction time on ORP variations and fiber degumming efficiency were fully investigated. Central composite design method was used to optimize the degumming process. The optimum operating parameters were original pH 11.0, hydrogen peroxide dosage of 5.0 g/L, oxidation temperature of 85°C, and reaction time of 60 min, respectively. When the ORP value in the solution varied from +320 to +350 mV, it could achieve desired and reasonable degumming result. Under this range, the residual gum percentage of treated fibers was relatively lower and the mechanical property was better compared with other ORP values. This study could be instructive in online monitoring and control of ramie fiber preparation process using ORP as an indicating factor.

Acknowledgements

The authors acknowledge the financial support from the earmarked fund for Modern Agro-industry Technology Research System (CARS-19-E25).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.