144
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental and macro finite element modeling studies on conformability behavior of woven nylon 66 composite reinforcement

ORCID Icon, & ORCID Icon
Pages 874-881 | Received 01 Feb 2019, Accepted 14 Sep 2019, Published online: 08 Oct 2019
 

Abstract

In this study, 3D hemispherical forming experiments are conducted to analyze the conformability behavior of nylon 66 plain woven reinforcements with different weft densities. To make insight into the forming process, a macro finite element model is also proposed for 3D forming of a specific woven reinforcement by using the defined ‘Fabric’ material. The results show that the proposed FEM modelling is highly correlated with experimental findings in terms of forming energy values with small and insignificant errors values, which confirm well model validity. It shows that the nylon 66 composite woven reinforcement with a lower weft density exhibits a lower forming energy (toughness) and hence a higher conformability over a hemispherical surface. On the other hand, modeling outputs clearly indicate that more wrinkling intensity appear for woven reinforcement with a higher weft density.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.