678
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Electrospun polyurethane-gelatin artificial skin scaffold for wound healing

, , &
Pages 378-387 | Received 19 Jul 2020, Accepted 23 Jan 2021, Published online: 17 Feb 2021
 

Abstract

Native skin consists mainly of epidermal and dermal layers. Here in this work, we have constructed an artificial skin scaffold mimicking the bilayered structure of the native skin using electrospinning technique for wound healing. Polyurethane (PU) and Gelatin (Ge) were used for developing the epidermal layer and the dermal layer respectively. Ciprofloxacin HCl (Cip. HCl) a fluoroquinolone antibiotic was incorporated in both the layers for rapid wound healing. Morphology of the skin scaffold was studied using scanning electron microscopy (SEM) analysis and the chemical characterization was performed using FTIR spectroscopy. Water vapor transmission rate test and oxygen transmission rate test was conducted to evaluate the barrier properties of the scaffold. Thermal stability of the skin scaffold was evaluated using DSC and TGA while an understanding of the exudate absorbing capacity and degradation behavior of the scaffold was obtained from water absorption studies and in vitro degradation studies respectively. In vitro drug release study and drug release kinetics was explored to understand the release mechanism of Cip. HCl from the scaffold. Both the layers showed nano and micropores when analyzed using SEM. The dermal layer showed comparatively more water absorption capacity and degradation, hence providing a moist environment for the wound. The skin scaffold was permeable to water vapor and oxygen, and hence will speed up the process of wound healing. In vitro release for Cip. HCl showed a non-Fickian swelling type release with zero-order kinetics. Disk diffusion test conducted on the bilayers proved the antibacterial activity of the membrane. Hence the electrospun PU-Ge skin scaffold containing Cip. HCl is a promising candidate among modern day wound healing materials.

Acknowledgement

R.M.J. thanks HLL Lifecare Ltd. for providing all the required facilities for the execution of the work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.