98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of weaving parameters on acoustic and thermal insulation properties of handmade carpets

ORCID Icon, &
Pages 248-258 | Received 07 Sep 2022, Accepted 11 Dec 2022, Published online: 25 Apr 2023
 

Abstract

Carpeting is one of the most efficient approaches to provide both the acoustic and thermal insulation, and improve the comfort of building inhabitants. In the current research work, the acoustic and thermal properties of handmade carpets as one of the commonly used textile products in several countries, especially in Middle-East countries, have been investigated. Aiming to find the optimum weaving condition to maximize the insulation performance of the handmade wool carpets, the weaving variables of knot type, knot density, and pile height were changed. By performing a set of experiments according to the Response Surface Methodology (RSM), the sound absorption coefficient and thermal resistance values were measured for each sample. The statistical analysis showed that the sound absorption and thermal properties of carpets were appropriately described with the linear model. The pile height was the most effective factor for the both sound absorption and thermal resistance responses. Knot density was marginally significant, while the knot type had a negligible contribution. Increasing the height of the pile and knot density led to an increase in sound absorption and thermal resistance. The optimization procedure suggested that within the experimental range, the best acoustic and thermal insulation, can be obtained at knot density of 35 (per 7 cm), and the pile height of 3 cm.

Disclosure statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Funding

This work was financially supported by the Iran National Science Foundation (INSF) in the frame work of the project contract No: 98028484.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.