11
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural networks (ANNs) and response surface methodology (RSM) for optimizing wetting and anti-bacterial properties of woven fabric

ORCID Icon, , &
Received 14 Dec 2022, Accepted 05 Jun 2024, Published online: 01 Jul 2024
 

Abstract

This study aims to enhance woven fabric’s antibacterial properties by coating with betel leaf extract using immersion and plasma pre-treatment techniques. It explores nano surface modification and develops mathematical models for inhibition zone values using response surface methodology (RSM) and artificial neural networks (ANNs). We divided the RSM into two groups based on the inputs, model A and model H, and then used artificial neural networks to compare the models. We analyzed fabric treatments using SEM, wetting tests, FT-IR spectrometry, and disc diffusion (Kirby-Bauer) with Staphylococcus aureus to assess nano surface modification and antibacterial properties of fabric-treated with discharged plasma. We compared the optimal inhibition zone values for polyester fabrics with plasma treatment, anti-bacterial coatings, and anti-bacterial and plasma treatment. Fabrics treated with antibacterial coating, plasma treatment, or both exhibited inhibition zones of 2.30 ± 0.50 mm, 3.00 ± 0.50 mm, and 6.40 ± 0.50 mm, respectively. Using RSM model A, wetting properties were predicted with SSE, R-squared, and RMSE values of 0.2402, 0.9999, and 0.2451, respectively. Model A also forecasted inhibition zones for different fabric treatments with R-squared values of 0.899 and 0.9579, and SSE values of 0.8038 and 0.0782, respectively. Additionally, inhibition zones were modeled using RSM model H and ANNs, yielding R-squared values of 0.9128 and 0.97724, respectively. We found that the inhibition zone value using the ANNs model had a better predictive ability than RSM. The new technique can, therefore, be used to enhance the anti-bacterial properties and absorbency of 100% polyester fabrics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.