Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 47, 2009 - Issue 9
463
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Speed-independent vibration-based terrain classification for passenger vehicles

&
Pages 1095-1113 | Received 21 Nov 2007, Accepted 03 Sep 2008, Published online: 13 Aug 2009
 

Abstract

Terrain physical characteristics can have a significant impact on passenger vehicle handling, ride quality, and stability. Here, an algorithm is presented to classify terrain using a single suspension-mounted accelerometer. The algorithm passes a measured acceleration signal through a dynamic vehicle model to estimate the terrain profile, and then extracts spatial frequency components of this estimated profile. A method is introduced to identify and remove terrain impulses from the profile that are caused by ruts and potholes. Finally, a supervised support vector machine is employed to classify profile segments as members of pre-defined classes (such as asphalt, brick, gravel, etc.). The classification algorithm is validated with experimental data collected with a passenger vehicle driving in real-world conditions. The algorithm is shown to classify multiple terrain types with reasonable accuracy at a range of typical automotive speeds. It is also shown that the removal of terrain impulses prior to classification improves classifier performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.