Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 48, 2010 - Issue 5
1,937
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

A method for estimation of vehicle inertial parameters

&
Pages 547-565 | Received 11 Aug 2008, Accepted 31 Mar 2009, Published online: 10 Mar 2010
 

Abstract

In this paper, a new method is presented for estimating the current sprung mass inertial parameters of a vehicle, such as the mass, pitch and roll mass moments of inertia, and lateral and longitudinal centre of gravity locations. The method measures the sprung mass response when the vehicle is driven over an unknown and unmeasured random road profile. From these measurements, the equivalent free-decay responses are extracted and modal analysis techniques used to estimate the sprung mass natural frequencies, damping ratios and mode shapes. This information is combined with a simplified vehicle estimation model, least squares analysis and known equivalent stiffness parameters to estimate the vehicles’ inertial parameters. The results obtained from several simulation examples show that estimates of the inertial parameters generally have small relative errors.

Acknowledgements

This work is supported by the ARC Centre of Excellence programme and a Discovery Project (DP 0773415) that are funded by the Australian Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.