Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 50, 2012 - Issue 8: Bicycle and Motorcycle Dynamics
243
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Presentation and assessment of rideability of a novel single-track vehicle: the Anaconda

&
Pages 1297-1317 | Received 27 Jan 2011, Accepted 20 Jul 2011, Published online: 09 Sep 2011
 

Abstract

In this paper, a new single-track vehicle, the Anaconda, is presented and modelled according to a multibody theory. This articulated vehicle begins with a traditional bicycle, called the head module, followed by a succession of so-called pedal modules (PMs) equipped with one rear-steered wheel. Each module is connected to the preceding one by a spherical joint. To assess its dynamic behaviour, the model of an Anaconda with two PMs is simulated under the EasyDyn framework, a multibody library based on the minimal coordinates approach. The simulation of such a vehicle cannot be performed without the riders’ action, consisting of the torques applied on the handlebars. The latter is implemented through controllers designed by optimal control, from the out-of-plane dynamics of the vehicle going straight ahead at 20 km/h. First, two optimal controllers are determined separately for the Head Module alone on one hand and for the Pedal Module alone on the other hand. They are then implemented on the Anaconda and it appears that the vehicle is close to instability and that the handling of the pedal modules is delicate but humanly possible. Finally, the difficulty in riding the Anaconda is evaluated through the so-called rideability index, which increases, as expected, with the amount of PMs, and shows that good psycho-motor skills will be needed to drive the Anaconda.

Acknowledgements

The authors thank the Belgian Development Agency (Belgian Technical Cooperation) for the doctoral grant of the second author, and the Lycée Technique Maurice Herlemont of La Louvière for the construction of the prototype.

Notes

For the purpose of illustration, the script related to the HM is given in Appendix.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.