Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 52, 2014 - Issue 9
1,107
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings

, , , , &
Pages 1211-1231 | Received 04 Mar 2014, Accepted 10 Jun 2014, Published online: 15 Jul 2014
 

Abstract

This paper presents the results of a detailed investigation of the effects of rail corrugation on the dynamic behaviour of metro rail fastenings, obtained from extensive experiments conducted on site and from simulations of train–track dynamics. The results of tests conducted with a metro train operating on corrugated tracks are presented and discussed first. A three-dimensional (3D) model of the metro train and a slab track was developed using multi-body dynamics modelling and the finite element method to simulate the effect of rail corrugation on the dynamic behaviour of rail fastenings. In the model, the metro train is modelled as a multi-rigid body system, and the slab track is modelled as a discrete elastic support system consisting of two Timoshenko beams for the rails, a 3D solid finite element (FE) model for the slabs, periodic discrete viscoelastic elements for the rail fastenings that connect the rails to the slabs, and uniformly viscoelastic elements for the subgrade beneath the slabs. The proposed train–track model was used to investigate the effects of rail corrugation on the dynamic behaviour of the metro track system and fastenings. An FE model for the rail fastenings was also developed and was used to calculate the stresses in the clips, some of which rupture under the excitation of rail corrugation. The results of the field experiments and dynamics simulations provide an insight into the root causes of the fracture of the clips, and several remedies are suggested for mitigating strong vibrations and failure of metro rail fastening systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.