522
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A natural human language framework for digital forensic readiness in the public cloud

ORCID Icon, ORCID Icon & ORCID Icon
Pages 566-591 | Received 09 Apr 2020, Accepted 01 Jun 2020, Published online: 12 Jul 2020
 

ABSTRACT

Currently, about half of all global enterprises are adopting and using some form of cloud computing services. In cloud computing, potential digital evidence is distributed across multiple isolated virtual machine instances. Investigating deleted or inactive virtual instances of a cloud is a challenge to digital forensics, and the traditional methods of digital forensics are inadequate to address such digital forensic investigation. Users of the public cloud (whether a potential victim of a cyberattack, a cybercriminal or a digital forensic investigator) inherently communicate using natural human language in the form of sentences and semantics in document messaging such as texts, emails or instant messages. Consequently, natural human language interaction provides a unique identifier for cloud users. This study leverages the natural human language as an identifier to develop a novel digital forensic readiness (DFR) framework for cloud computing to detect cybercrime. The DFR framework comprises the integration of natural language processing techniques in designing a process that mimics a near real-time approach towards cybercrime detection in a cloud environment. Natural language understanding techniques are used to analyse textdata of users in the public cloud and textdata of reported cybercrimes to develop a DFR framework. In the preliminary formation of the DFR framework, the output shows that cybercrime attacks that are in progress in the form of textdata such as online documents, instant messages or emails within an organizational cloud domain can be identified, and potentially investigated swiftly, using the unique signature of users as identifiers. When adopted, the proposed DFR framework can minimize the time lapses in incident identification and reduce the subsequent investigation time of cybercrimes in the public cloud domain.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 215.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.