301
Views
25
CrossRef citations to date
0
Altmetric
Scientific Article

An automated in-line clinical mastitis detection system using measurement of conductivity from foremilk of individual udder quarters

, , &
Pages 208-214 | Received 22 Sep 2008, Accepted 12 May 2009, Published online: 16 Feb 2011
 

Abstract

AIM: To assess a novel method for automatic in-line detection of clinical mastitis.

METHODS: For a brief period at the start of milking for each cow, electrical conductivity of foremilk was measured for each quarter in turn, using a single sensor installed in the long milk tube (LMT) about 1.5 m downstream from the milking-machine claw. Sequential separation of flow between udder quarters was achieved by control of pulsation to individual teatcups within a conventional cluster. The ratio of conductivity values between quarters was used as an indicator of mastitis status. The concept was evaluated initially in a pilot trial in a 200-cow herd milked in a 23-stall swing-over herringbone milking parlour. It was then tested rigorously in a field trial in a 640-cow herd milked in a 50-stall rotary milking parlour. Both trials were conducted in the Waikato region of New Zealand. In the latter trial, sensor results were compared with visual inspection of a commercial in-line mastitis filter fitted to each milking unit. These filters were inspected for clots immediately after every cow's milking, for 3 weeks. The dataset of approximately 27,000 individual milkings was tested against several published or potential alter- native ‘gold standards’ for diagnosing clinical mastitis.

RESULTS: In the pilot trial, 12–14 clinical events were detected out of 19 true clinical quarters, with a false-alert rate of between three and five false electrical-conductivity alerts per 1,000 individual milkings. In the more rigorous field trial, sensitivity ranged from 68 to 88%, and the false-alert rate (false-alert episodes per 1,000 individual milkings) ranged from 2.3 to 7.0.

CONCLUSION: The novel clinical mastitis detection system, based on separation of the flow and measurement of electrical conductivity from foremilk of individual udder quarters, has the potential to provide a new tool for helping farmers to monitor clinical mastitis in herds milked with conventional clusters.

Acknowledgements

The authors gratefully acknowledge the Pouls and Kirkham families, Waikato, for the use of their facilities to run the trials; John Pouls for his excellent data collection during the pilot trial; Aimee Knight for her diligent efforts in monitoring the field trial; and Waikato Milking Systems for their provision of quarter-pulsation pulsators and electrical-conductivity sensors for the trials, and for arranging the trials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 213.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.