Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 36, 2006 - Issue 7
216
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Role for enhanced faecal excretion of bile acid in hydroxysteroid sulfotransferase-mediated protection against lithocholic acid-induced liver toxicity

, , , , , & show all
Pages 631-644 | Received 09 Feb 2006, Accepted 27 Apr 2006, Published online: 22 Sep 2008
 

Abstract

The efficient clearance of toxic bile acids such as lithocholic acid (LCA) requires drug-metabolizing enzymes. We therefore assessed the influence of pregnenolone 16α-carbonitrile (PCN) treatment on LCA-induced hepatotoxicity and disposition of LCA metabolites using female farnesoid X receptor (FXR)-null and wild-type mice. Marked decreases in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, and hepatic tauroLCA (TLCA) concentrations were found in LCA-fed wild-type mice co-treated with PCN. Whereas induction of Cyp3a and hydroxysteroid sulfotransferase (Sult2a) proteins was observed in FXR-null and wild-type mice, clear increases in biliary 3α-sulfated TLCA but not total 6α-hydroxy LCA (taurohyodeoxycholic acid and hyodeoxycholic acid) were only observed in PCN-treated wild-type mice. Biliary 3α-sulfated TLCA output rate was increased 7.2-fold, but accounts for only 4.2% of total bile acid output rate in LCA and PCN-co-treated wild-type mice. Total 3α-sulfated LCA (LCA and TLCA) was, however, the most abundant bile acid component in faeces suggesting that efficient faecal excretion of biliary 3α-sulfated TLCA through escape from enterohepatic circulation. FXR-null mice, which have constitutively high levels of the Sult2a protein, were fed a diet supplemented with 1% LCA and 0.4% dehydroepiandrosterone (DHEA), a typical Sult2a substrate/inhibitor. The faecal total 3α-sulfated bile acid excretion was reduced to 62% of FXR-null mice fed only the LCA diet. Hepatic TLCA concentration and serum AST activity were significantly higher in FXR-null mice fed DHEA and LCA diet than in FXR-null mice fed the LCA diet or DHEA diet. These results suggest that hepatic formation of 3α-sulfated TLCA is a crucial factor for protection against LCA-induced hepatotoxicity.

Acknowledgements

The study was supported by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan, and by a Grant-in-Aid from the Ministry of Health, Labor and Welfare, Japan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.