Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 37, 2007 - Issue 7
275
Views
68
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes

, PhD, , &
Pages 693-708 | Received 09 Feb 2007, Accepted 14 Apr 2007, Published online: 22 Sep 2008
 

Abstract

The metabolism and cytotoxic effects of tetrabromobisphenol A (TBBPA), a phenolic flame retardant, and its analogues were studied in freshly isolated rat hepatocytes and isolated hepatic mitochondria, respectively. The exposure of hepatocytes to TBBPA caused not only concentration (0.25–1.0 mM)- and time- (0–3 h) dependent cell death accompanied by the loss of cellular ATP, adenine nucleotide pools, reduced glutathione, and protein thiols, but also the accumulation of oxidized glutathione and malondialdehyde, indicating lipid peroxidation. TBBPA at a weakly toxic level (0.25 mM) was metabolized to monoglucuronide and monosulfate conjugates: the amounts of glucuronide rather than sulfate conjugate predominantly increased, accompanied by a loss of the parent compound, with time. In comparative effects based on cell viability, mitochondrial membrane potential and some toxic parameters, bisphenol A (BPA) was less toxic than TBBPA and tetrachlorobisphenol A (TCBPA), which are not significant differences in these parameters. In mitochondria isolated from rat liver, TBBPA and TCBPA caused an increase in the rate of State 4 oxygen consumption in the presence of succinate, indicating an uncoupling effect and a decrease in the rate of State 3 oxygen consumption in a concentration-dependent manner (5–25 µM). Taken collectively, our results indicate that (i) mitochondria are target organelles for TBBPA, which elicits cytotoxicity through mitochondrial dysfunction related to oxidative phosphorylation at an early stage and subsequently lipid peroxidation at a later stage; and (ii) the toxicity of TBBPA and TCBPA is greater than that of BPA, suggesting the participation of halogen atoms such as bromine and chlorine in the toxicity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.