Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 51, 2021 - Issue 2
442
Views
11
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Role of human flavin-containing monooxygenase (FMO) 5 in the metabolism of nabumetone: Baeyer–Villiger oxidation in the activation of the intermediate metabolite, 3-hydroxy nabumetone, to the active metabolite, 6-methoxy-2-naphthylacetic acid in vitro

ORCID Icon, , , , & ORCID Icon
Pages 155-166 | Received 07 Sep 2020, Accepted 24 Oct 2020, Published online: 16 Nov 2020
 

Abstract

  1. Nabumetone (NAB) is a non-steroidal anti-inflammatory drug used clinically, and its biotransformation includes the major active metabolite 6-methoxy-2-naphthylacetic acid (6-MNA). One of the key intermediates between NAB and 6-MNA may be 3-hydroxy nabumetone (3-OH-NAB).

  2. The aim of the present study was to investigate the role of flavin-containing monooxygenase (FMO) isoform 5 in the formation of 6-MNA from 3-OH-NAB. To elucidate the biotransformation of 3-OH-NAB to 6-MNA, an authentic standard of 3-OH-NAB was synthesised and used as a substrate in an incubation with human liver samples or recombinant enzymes.

  3. The formation of 3-OH-NAB was observed after the incubation of NAB with various cytochrome P450 (CYP) isoforms. However, 6-MNA itself was rarely detected from NAB and 3-OH-NAB. Further experiments revealed a 6-MNA peak derived from 3-OH-NAB in human hepatocytes. 6-MNA was also detected in the extract obtained from 3-OH-NAB by a combined incubation of recombinant human FMO5 and human liver S9.

  4. We herein demonstrated that the reaction involves carbon-carbon cleavage catalyzed by the Baeyer–Villiger oxidation (BVO) of a carbonyl compound, the BVO substrate, such as a ketol, by FMO5. Further in vitro inhibition experiments showed that multiple non-CYP enzymes are involved in the formation of 6-MNA from 3-OH-NAB.

Acknowledgments

The authors are indebted to Kentaro Hori, Shimadzu Techno-Research, Inc., for his help with the operation of the triple quadruple liquid chromatograph mass spectrometer (LC-MS/MS, LCMS-8060, Shimadzu, Kyoto, Japan).

Ethical approval

This material is the authors’ own original work, which has not been previously published elsewhere. This article reflects the authors’ own research and analyses in a truthful and complete manner and does not violate any code of ethics.

Disclosure statement

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.