88
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Distribution of Nitrogen Species During Vitrinite Pyrolysis and Gasification

, , , , &
Pages 1075-1084 | Published online: 16 Aug 2006
 

The formation of HCN and NH3 during pyrolysis in Ar and gasification in CO2 and steam/Ar was investigated. Vitrinites were separated and purified from different rank coal from lignite to anthracite. Pyrolysis and gasification were carried out in the drop-tube/fixed-bed reactor at temperatures of 600–900°C. Results showed that with increase of reaction temperature the yield of HCN increased significantly during pyrolysis and gasification. Decrease of coal rank also increased the yield of HCN. Vitrinite from lower rank of coal with high volatile content released more HCN. The yield of NH3 was the highest at 800°C during pyrolysis and gasification. And the yield of NH3 from gasification in steam/Ar was far higher than that from gasification in CO2, where the hydrogen radicals play a key role. Nitrogen retained in char was also investigated. The yield of char-N decreased with an increase of pyrolysis temperature. Vitrinite from lower rank coal had lower yield of char-N than that from the high rank coal.

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the Special Funds for Major State Basic Research Projects of P.R. China (No. G1999022101) and National Nature Science Fund of China (No. 20276046).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.