461
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Development of Polyvinyl Alcohol Fibrous Biodegradable Scaffolds for Nerve Tissue Engineering Applications: In Vitro Study

, , , &
Pages 474-480 | Received 05 May 2014, Accepted 19 Sep 2014, Published online: 02 Feb 2015
 

Abstract

In this study, polyvinyl alcohol (PVA) fibers were modified through an effective cross linking method. Adequate porosity and surface area are widely recognized as important parameters in the design of scaffolds for tissue engineering and therefore measurement of porosity is very important. Herein, porosity measurement of various surface layers of scaffold was done through a new method, and image analysis was used for this purpose. Scanning electron microscopy micrographs of nanofibrous scaffolds were converted to binary images using different thresholds and porosity of scaffold was measured in various layers. In addition, for ascertaining of cross linking of the PVA nanofibrous scaffolds, Fourier transform infrared spectroscopy analysis was employed. Also, the in vitro biodegradability of the nanofibrous scaffold was evaluated. The PVA crosslinked nanofibrous scaffold was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (PC12 cells). Finally, the results of the swelling behavior of the samples revealed that the cross linked PVA scaffold has a strong swelling about 450%.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.