322
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Physical and mechanical properties of thermosensitive xanthan/collagen-inspired protein composite hydrogels

, , , , &
Pages 125-133 | Received 23 Feb 2015, Accepted 16 Jul 2015, Published online: 30 Nov 2015
 

ABSTRACT

Functionalization of xanthan hydrogels is of interest for biomaterial applications. The authors report characterization of electrostatic complexation of xanthan with a recombinant collagen-inspired triblock protein polymer. This polymer has one charged polylysine end-block that can bind to xanthan by electrostatic interactions, and another end-block that can self-assemble into thermosensitive collagen-like triple helices; the end-blocks are connected by a neutral, hydrophilic, mostly inert random coil. The protein modifies the xanthan/protein composite hydrogels in three ways: (a) a significant increase in storage modulus, (b) thermosensitivity, and (c) a two-step strain softening in nonlinear rheology.

GRAPHICAL ABSTRACT

Acknowledgments

The authors would like to thank A. Hernandez-Garcia for providing the (Lys)6-encoding dsDNA adapter and M. W. T. Werten for genetic cloning/fermentation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.