296
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

New N-(2-carboxybenzyl)chitosan composite scaffolds containing nanoTiO2 or bioactive glass with enhanced cell proliferation for bone-tissue engineering applications

, , , , , , & show all
Pages 71-81 | Received 09 Dec 2015, Accepted 19 Apr 2016, Published online: 11 May 2016
 

ABSTRACT

In the present study N-(2-carboxbenzyl)chitosan (CBCS) 3D macroporous hybrid scaffolds with interconnected pore system, containing 0.5, 2.5, and 5 wt% TiO2 nanoparticles (nTiO2) and 2.5 wt% Bioglass 45S5 (BG) have been synthesized using freeze-drying technique. Compressive strength values verified that the modification of chitosan combined with the presence of inorganic fillers can attribute significant mechanical stiffness to the scaffold. The in vitro biomineralization test confirmed that all samples were bioinert as mineral deposits were detected with X-ray diffractometry after incubation in SBF. Cytotoxicity and biocompatibility of all scaffolds were tested by using and Wharton’s jelly–derived mesenchymal stem cells (WJ-MSCs) and human embryonic kidney 293 (HEK 293) cell line. Metabolic activity, proliferation, migration, and attachment to the scaffolds were examined. Cells appeared to attach around the superficial pores and migrate in them. Cells also maintained their morphology, proliferated, and migrated across the scaffolds and showed consistent and proved compatibility.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.