166
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) prepared by W/O/W emulsion technique for drug carrier: Evaluation of in vitro release of dexamethasone from composite nanoparticles

, &
Pages 629-634 | Received 07 Mar 2017, Accepted 29 Jul 2017, Published online: 21 Sep 2017
 

ABSTRACT

Biocompatible polymeric carriers containing inorganic materials for delivering therapeutic agents to a targeted site are promising candidate for drug delivery. Two nanocomposite nanoparticles, magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) (Fe3O4/PLGA and HAp/PLGA, respectively), with different weight ratios of inorganics to polymer and different polymer molecular weights were prepared by water-in-oil-in-water (W/O/W) emulsion technique to determine incorporation and in vitro release profile of the small molecule drugs water-insoluble dexamethasone acetate (DEX-Ac) and water-soluble dexamethasone phosphate (DEX-P). The in vitro release for DEX-Ac nanoparticles showed an initial burst release followed by a continuous slower release, whereas DEX-P nanoparticles showed only rapid initial release behavior.

GRAPHICAL ABSTRACT

Additional information

Funding

We are grateful for funding from Government Research Budget, Chulalongkorn University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.