2,002
Views
18
CrossRef citations to date
0
Altmetric
Articles

Covalently injectable chitosan/chondroitin sulfate hydrogel integrated gelatin/heparin microspheres for soft tissue engineering

, , , , , , , , & show all
Pages 149-157 | Received 21 Apr 2019, Accepted 17 Nov 2019, Published online: 27 Nov 2019
 

Abstract

Microspheres and injectable hydrogels derived from natural biopolymers have been extensively investigated as drug carriers and cell scaffolds. In this study, we report a preparation of composite scaffolds basing microspheres and hydrogel via the Schiff’s base reaction. Hybrid gelatin/heparin microspheres loading insulin-like growth factor-1 (IGF-1) with a diameter of 5–10 µm were fabricated using an emulsion cross-linking method. Synchronously, water-soluble carboxymethyl chitosan (CMC) and oxidized chondroitin sulfate (OCS) were prepared for cross-linking of hydrogels, which were embedded with microspheres to produce a composite microspheres/gel scaffold. The mechanism of scaffold cross-linking is attributed to the Schiff’s base reaction between amino and aldehyde groups of biopolymers. Currently, gelation rate, morphology, mechanical properties, swelling ratio, weight loss, and IGF-1 release of the composite scaffolds were examined in vitro. The results show that mechanical and bioactive properties of CMC-OCS hydrogel can be significantly improved by embedding gelatin/heparin microspheres containing IGF-1. Compressive modulus of composite gel scaffolds containing 3 wt% of microspheres was 16 kPa, which was higher than the control hydrogel without microspheres. Cumulative release of IGF-1 during 7 days from microspheres embedded hydrogel was 70%, which was significantly lower than those of microspheres and hydrogels. Moreover, the composite microspheres/gel scaffolds exhibited higher swelling ratio and slower degradation rate than the control. Potential of the composite scaffolds was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) in vitro. Cell culture showed that this composite hydrogel could support survival and proliferation of ASCs. These results demonstrate the potential of gelatin/heparin microspheres embedded CMC-OCS hydrogels as an injectable scaffold in soft tissue engineering.

Graphical Abstract

Acknowledgments

We thankfully acknowledge the Training Project for Leading Talents of Jiangsu Province Traditional Chinese Medicine (LJ200921) and the National Natural Science Foundation of Jiangsu Province (BK20171113).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.