643
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Electrospun scaffold for bone regeneration

&
Pages 842-857 | Received 19 Jan 2021, Accepted 06 Apr 2021, Published online: 18 May 2021
 

Abstract

The growing trend of bone disorders often caused by accidental injury coupled with aging increasing aging population demands more effective therapeutic intervention. Bone tissue engineering is considered a unique method that provides functional bone grafts by combining biomaterial, cells, and signaling factors and can be a promising alternative to the conventional bone grafts used for bone defect treatment. However, the fabrication of a scaffold matrix with nanofeature architecture mimicking bone tissue is one of the significant challenges that limits its clinical application so far. In this context, electrospinning generating biomimetic nanofibrous scaffold structures is a potential technique that results in an excellent micro-environment for the cells to attach, migrate, proliferate, and finally differentiate in comparison to scaffolds fabricated by traditional methods and hence widely used mainly in the last decade. Although having several advantages of electrospun scaffolds, cell infiltration and mechanical strength of the scaffolds are the significant issues that need to be addressed for bone tissue engineering. Numerous concepts or strategies applied during or after electrospinning to overcome these limitations are the main focus points of the current review. This review highlights the current research related to electrospinning techniques used to fabricate bone scaffold and the influence of critical process parameters on nanofiber formation. The various recently reported advanced scaffold fabrication techniques and their advantages when combined with electrospinning process has been presented to address the limitation associated with the bone tissue engineered scaffold fabrication, which may pave the way for the fabrication of scaffold for clinical grade bone graft development in future.

Graphical Abstract

Acknowledgements

The authors are thankful to MHRD, Government of India, New Delhi for providing research facility by sanctioning Center of Excellence (F.No. 5-6/2013-TS VII) in Tissue Engineering.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.