445
Views
2
CrossRef citations to date
0
Altmetric
Articles

Anisotropic PLGA microsphere/PVA hydrogel composite with aligned macroporous structures for directed cell adhesion and proliferation

, , ORCID Icon, , , , & show all
Pages 397-406 | Received 02 Aug 2021, Accepted 10 Dec 2021, Published online: 31 Dec 2021
 

Abstract

The fabrication of bio tissues using anisotropic constructs capable of repairing and/or replacing diseased bio tissues remains a significant challenge in tissue engineering. Therefore, this study investigated the fabrication of an anisotropic PLGA-microspheres/PVA-hydrogel composite using a novel directional freezing-thawing (DFT) technique. The DFT technique altered the properties of the anisotropic PLGA-microspheres/PVA-hydrogel composite, such that its compressive strength improved from 14.64 ± 1.09 MPa after three DFT cycles to 45.77 ± 6.73 MPa after nine cycles. The utilization of the DFT technique was also shown to enhance the proliferation and adhesion of cultured chondrocyte cells. The obtained results demonstrated that DFT constituted a facile method to fabricate anisotropic microsphere/hydrogel composites with improved and directed cell adhesion characteristics.

Graphical Abstract

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (51773161), and the Technological Innovation Project of Rizhao City (2019CXZX1108). Lei Nie acknowleges the support from Yang Yuan.

Disclosure statement

The authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,070.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.