142
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation

, , &
Pages 587-602 | Received 20 May 2010, Accepted 08 Dec 2010, Published online: 13 Jun 2011
 

Abstract

In this paper, we deal with the estimation, under a semi-parametric framework, of the Value-at-Risk (VaR) at a level p, the size of the loss occurred with a small probability p. Under such a context, the classical VaR estimators are the Weissman–Hill estimators, based on any intermediate number k of top-order statistics. But these VaR estimators do not enjoy the adequate linear property of quantiles, contrarily to the PORT VaR estimators, which depend on an extra tuning parameter q, with 0≤q<1. We shall here consider ‘quasi-PORT’ reduced-bias VaR estimators, for which such a linear property is obtained approximately. They are based on a partially shifted version of a minimum-variance reduced-bias (MVRB) estimator of the extreme value index (EVI), the primary parameter in Statistics of Extremes. Due to the stability on k of the MVRB EVI and associated VaR estimates, we propose the use of a heuristic stability criterion for the choice of k and q, providing applications of the methodology to simulated data and to log-returns of financial stocks.

2000 AMS Subject Classifications :

Acknowledgements

Research partially supported by FCT/OE and PTDC/FEDER. We also would like to thank a referee for the valuable comments on a first version of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.