139
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A more efficient Gibbs sampler estimation using steady-state simulation: applications to public health studies

, , &
Pages 1931-1945 | Received 16 Aug 2012, Accepted 24 Jan 2013, Published online: 18 Feb 2013
 

Abstract

Markov chain Monte Carlo methods, in particular, the Gibbs sampler, are widely used algorithms both in application and theoretical works in the classical and Bayesian paradigms. However, these algorithms are often computer intensive. Samawi et al. [Steady-state ranked Gibbs sampler. J. Stat. Comput. Simul. 2012;82(8), 1223–1238. doi:10.1080/00949655.2011.575378] demonstrate through theory and simulation that the dependent steady-state Gibbs sampler is more efficient and accurate in model parameter estimation than the original Gibbs sampler. This paper proposes the independent steady-state Gibbs sampler (ISSGS) approach to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in multidimensional problems.

Acknowledgements

We would like to thank the referees and the associate editor for their valuable comments which improved the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.