268
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating model misspecification in independent component analysis

, , &
Pages 1151-1164 | Received 12 Aug 2013, Accepted 18 Nov 2013, Published online: 16 Dec 2013
 

Abstract

Independent component analysis (ICA) is a popular blind source separation technique used in many scientific disciplines. Current ICA approaches have focused on developing efficient algorithms under specific ICA models, such as instantaneous or convolutive mixing conditions, intrinsically assuming temporal independence or autocorrelation of the sources. In practice, the true model is not known and different ICA algorithms can produce very different results. Although it is critical to choose an ICA model, there has not been enough research done on evaluating mixing models and assumptions, and how the associated algorithms may perform under different scenarios. In this paper, we investigate the performance of multiple ICA algorithms under various mixing conditions. We also propose a convolutive ICA algorithm for echoic mixing cases. Our simulation studies show that the performance of ICA algorithms is highly dependent on mixing conditions and temporal independence of the sources. Most instantaneous ICA algorithms fail to separate autocorrelated sources, while convolutive ICA algorithms depend highly on the model specification and approximation accuracy of unmixing filters.

AMS Subject Classification:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.