265
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A comparison of doubly robust estimators of the mean with missing data

&
Pages 3383-3403 | Received 13 Nov 2013, Accepted 07 Oct 2014, Published online: 31 Oct 2014
 

Abstract

We consider data with a continuous outcome that is missing at random and a fully observed set of covariates. We compare by simulation a variety of doubly-robust (DR) estimators for estimating the mean of the outcome. An estimator is DR if it is consistent when either the regression model for the mean function or the propensity to respond is correctly specified. Performance of different methods is compared in terms of root mean squared error of the estimates and width and coverage of confidence intervals or posterior credibility intervals in repeated samples. Overall, the DR methods tended to yield better inference than the incorrect model when either the propensity or mean model is correctly specified, but were less successful for small sample sizes, where the asymptotic DR property is less consequential. Two methods tended to outperform the other DR methods: penalized spline of propensity prediction [Little RJA, An H. Robust likelihood-based analysis of multivariate data with missing values. Statist Sinica. 2004;14:949–968] and the robust method proposed in [Cao W, Tsiatis AA, Davidian M. Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika. 2009;96:723–734].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.