199
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A fast general extension algorithm of Latin hypercube sampling

, &
Pages 3398-3411 | Received 27 Jul 2016, Accepted 13 Aug 2017, Published online: 24 Aug 2017
 

ABSTRACT

A fast general extension algorithm of Latin hypercube sampling (LHS) is proposed, which reduces the time consumption of basic general extension and preserves the most original sampling points. The extension algorithm starts with an original LHS of size m and constructs a new LHS of size m + n that remains the original points. This algorithm is the further research of basic general extension, which cost too much time to get the new LHS. During selecting the original sampling points to preserve, time consumption is cut from three aspects. The first measure of the proposed algorithm is to select isolated vertices and divide the adjacent matrix into blocks. Secondly, the relationship of original LHS structure and new LHS structure is discussed. Thirdly, the upper and lower bounds help reduce the time consumption. The proposed algorithm is applied for two functions to demonstrate the effectiveness.

Acknowledgements

The authors would like to thank the editor and two referees for helpful comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research is supported by the National Natural Science Foundation of China [Grant No. 61403097].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.