355
Views
5
CrossRef citations to date
0
Altmetric
Articles

A change-point detection and clustering method in the recurrent-event context

ORCID Icon, &
Pages 1131-1149 | Received 11 Mar 2019, Accepted 14 Jan 2020, Published online: 27 Jan 2020
 

Abstract

Change-point detection in the context of recurrent-event is a valuable analysis tool for the identification of the intensity rate changes. It has been an interesting topic in many fields, such as medical studies, travel safety analysis, etc. If subgroups exist, clustering can be incorporated into the change-point detection to improve the quality of the results. This paper develops a new algorithm named Recurrent-K-means to detect the change-points of the intensity rates and identify clusters of objects with recurrent events. It also proposes a test-based method to perform a heuristic search in determining the number of underlying clusters. In this study, the objects are assumed to fall in several clusters while the objects in the same cluster share identical change-points. The event count for an object is assumed to be a non-homogeneous Poisson process with a piecewise-constant intensity function. The methodology estimates the change-point as well as the intensity rates before and after the change-point for each cluster. The methodology establishes a clustering analysis based on K-means algorithm but enhances the procedure to be model based. The simulation study shows that the methodology performs well in parameter estimation and determination of the number of clusters in different scenarios. The methodology is applied to the UK coal mining disaster data to show its possible role in shaping government regulations and improving coal industry safety.

2010 MATHEMATICS SUBJECT CLASSIFICATIONS:

Acknowledgements

We would like to thank Mike Cammilleri, the Director of the IT Office in the Department of Statistics at University of Wisconsin-Madison for the support in high-performance computing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,209.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.