113
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Chelating activity of bis(diacetylmonoxime)thiocarbohydrazone towards VO2+, Co(II), Ni(II), Cu(II) and Pt(IV) ions

&
Pages 1591-1601 | Received 20 Jul 2005, Accepted 12 Jan 2005, Published online: 25 Jan 2007
 

Abstract

A new chelating agent, bis(diacetylmonoxime)thiocarbohydrazone (H3DMT), has been synthesized from reaction between diacetylmonoxime and thiocarbohydrazide. The prepared ligand, characterized by elemental analysis, IR and 1H NMR spectra, is a strong chelating agent and indicator. Its coordinating properties have been studied toward VO2+, Co(II), Ni(II), Cu(II) and Pt(IV) ions. The data revealed the formation of mononuclear complexes with Co(II) and Pt(IV) and binuclear complexes with the rest. In all complexes, the ligand binds in its deprotonated form through the oxime and hydrazone nitrogens as well as the thiol or thione sulfur forming five- and six-membered rings. All complexes exhibit an octahedral structure except for the Cu(II) which has a square-pyramidal geometry based on the spectral and magnetic studies. The ESR spectra of the Cu(II) and VO2+ complexes are in good agreement with the structural results. The color change from acidic (yellow) to basic (reddish brown) media gives the ligand the ability to become as an analytical indicator for weak acid–weak base titrations.

Acknowledgement

The authors express their thanks to the Unit of Projects Management, Mansoura University, EGYPT for the funding to finish this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.