214
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Dinaphthotetraaza[14]annulene copper(II) complexes in the electrocatalytic reduction of carbon dioxide and bisulfite anion

, , &
Pages 479-489 | Received 26 Dec 2006, Accepted 08 Mar 2007, Published online: 22 Feb 2008
 

Abstract

A modified synthetic route for the complexes [Cu(II)5,7,12,14-tetramethyldinaphtho [b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)tmdnTAA], and [Cu(II) 5,7,12,14-tetramethyl-6,13-dichloro-dinaphtho[b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)dCltmdnTAA], is presented in this work. The electrochemical characterization of both complexes and their precursors, [bis(2,4-pentanedionato)copper(II)], [Cu(II)(acac)2] and [bis(3-chloro-2,4-pentanedionato)copper(II)], [Cu(II)(3-Cl-acac)2], respectively, under nitrogen and carbon dioxide is also presented. The voltammetric response of [Cu(II)(acac)2] and [Cu(II)(3-Cl-acac)2] are different compared to [Cu(II)tmdnTAA] and [Cu(II)dCltmdnTAA] under nitrogen. Precursors show the reduction of Cu(I) to Cu(0) and the tetraazadinaphtho[14]annulene complexes do not. The chlorine substituted complex has a lower reduction potential than the unsubstituted homologue under nitrogen atmosphere. However, the contrary response is obtained in the presence of carbon dioxide: the unsubstituted complex is more catalytic in terms of potential because the current discharge appears 270 mV shifted to the anodic region. These facts can be explained in terms of electronic and steric effects. The modified electrode obtained by oxidative electropolymerization of [Cu(II)tmdnTAA] over glassy carbon electrode presented a suitable amperometric response for the sulfite reduction in acidic medium (pH = 2.7). A linear correlation was observed for the catalytic current and sulfite concentration between 0.6–6.0 mM range.

Acknowledgement

This research has been financially supported by CONICYT, FONDECYT (Chile), projects Nos 8010006, 1060030 and ACT 24 Conicyt/World Bank Bicentennial.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.