152
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (nanopores of zeolite-Y)/guest ([Ni([R]2-N2X2)]2+ (R = H, CH3; X = NH, O, S) nanocatalyst

Pages 980-995 | Received 27 Feb 2008, Accepted 23 May 2008, Published online: 30 Jan 2009
 

Abstract

Nickel(II) complexes of 12-membered macrocyclic ligands with different donating atoms (N2O2, N2S2 and N4) in the macrocyclic ring have been encapsulated in the nanocavity of zeolite-Y by the fexible-ligand method. Nickel(II) complexes with macrocyclic ligands were entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of precursor ligand; 1,2-di(o-aminophenyl-, amino, oxo, thio)ethane, N2X2; in the supercages of the Ni(II)–NaY, and (ii) in situ condensation of the Ni(II) precursor complex; [Ni(N2X2)]2+; with glyoxal or biacetyl. The new host–guest nanocatalysts (HGNM), [Ni([R]2-N2X2)]2+–NaY (R = H, CH3; X = NH, O, S), have been characterized by FT-IR, DRS and UV–Vis spectroscopic techniques, XRD and elemental analysis, as well as nitrogen adsorption, and were used for oxidation of cyclohexene with molecular oxygen.

Acknowledgement

Author is grateful to Council of University of Kashan for providing financial support to undertake this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.